54
Bioremediation for Sustainable Environmental Cleanup
Acknowledgements
The authors acknowledge the financial support from Universidad de Buenos Aires (UBACyT
N°20020190100323BA, N°20020190200302BA, PDE 032/2020) and would also like to thank the
computer engineering students Matías Reimondo, Santiago Pinto and Lucas Lavandeira for their
collaboration in the development of the application used in this work.
References
Acheampong, M., K. Pakshirajan, A. Annachhatre and P. Lens. 2013. Removal of Cu(II) by biosorption onto coconut
shell in fixed-bed column systems. J. Ind. Eng. Chem. 19: 841–848.
ACUMAR. 2019. Records of establishments in the Matanza Riachuelo Basin 2019(in Spanish). Retrieved from http://
datos.acumar.gob.ar/dataset/registro-de-establecimientos-de-la-cuenca-matanza-riachuelo-2019/archivo/
dca9d704-8e4c-4bbb-bed1-2a7460788eb0 consulta 3/08/2019.
Aksu, Z. and F. Gönen. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed:
prediction of breakthrough curves. Process Biochem. 39: 599–613.
Apro, N. J., C. J. Cuadrado and P. A. Secreto. 2004. Stabilization of wheat bran and germ, through the extrusion
process as an input for the food industry (in Spanish). Development and Innovation Day. INTI-Cereals and
Oilseeds.
BCC, Bolsa de comercio de Córdoba. 2014. Chapter 15: Peanut production chain (in Spanish). Retrieved from https://
bolsacba.com.ar/buscador/?p=1354.
Boeykens, S. P., M. N. Piol, L. Samudio Legal, A. B. Saralegui and C. Vázquez. 2017. Eutrophication decrease:
phosphate adsorption processes in presence of nitrates. J. Environ. Manage. 203: 888–895.
Boeykens, S. P., A. B. Saralegui, N. Caracciolo and M. N. Piol. 2018. Agroindustrial waste for lead and chromium
biosorption J. Sustain. Dev. Energy Water Environ. Syst. 6: 341–350.
Boeykens, S. P., N. Redondo, R. A. Obeso, N. Caracciolo and C. Vázquez. 2019. Chromium and lead adsorption by
avocado seed biomass study through the use of Total Reflection X-Ray Fluorescence analysis. Appl. Radiat.
Isot. 153: 108809.
Bohart, G. and E. Adams. 1920. Some aspects of the behavior of charcoal with respect to chlorine. J. Am. Chem. Soc.
42: 523–544.
Borba, C., E. Da Silva, M. Fagundes-Klen, A. Kroumov and R. Guirardello. 2008. Prediction of the copper (II) ions
dynamic removal from a medium by using mathematical models with analytical solution. J. Hazard. Mater.
152: 366–372.
Branzini, A. and M. Zubillaga. 2012. Remediation and monitoring of soils contaminated with heavy metals: Organic
and inorganic amendments to remediate soils contaminated with metals (in Spanish). Editorial Académica
Española.
Calero, M., F. Hernáinz, G. Blázquez, G. Tenorio and M. Martín-Lara. 2009. Study of Cr (III) biosorption in a fixed-
bed column. J. Hazard. Mater. 171: 886–893.
Carrere, R. 2010. The avocado: a fruit tree for the family garden (in Spanish). Retrieved from https://docplayer.es/
amp/14007991-La-palta-un-frutal-para-la-huerta-familiar.html.
Cartaya, O. E, I. Reynaldo, C. Peniche and M. L. Garrido. 2011. Use of natural polymers as an alternative for the
remediation of soils contaminated by heavy metals (in Spanish). Rev. Int. de Contam. Ambient. 27: 41–46.
Chen, S., Q. Yue, B. Gao, Q. Li, X. Xu and K. Fu. 2012. Adsorption of hexavalent chromium from aqueous solution by
modified corn stalk: a fixed-bed column study. Bioresource Technol. 113: 114–120. https://doi.org/10.1016/j.
biortech.2011.11.110.
Chu, K. H. and M. A. Hashim. 2007.Copper biosorption on immobilized seaweed biomass: Column breakthrough
Characteristics. J. Environ. Sci. 19: 928–932.
Chu, K. H. 2020. Breakthrough curve analysis by simplistic models of fixed bed adsorption: in defense of the century-
old Bohart-Adams model. Chem. Eng. J. 380: 122513. https://doi.org/10.1016/j.cej.2019.122513.
Dhanasekaran P., P. Satya and K. I. Gnanasekar. 2017. Fixed bed adsorption of fluoride by Artocarpus hirsutus based
adsorbent. J. Fluor. Chem. 195: 37–46.
Di Giulio, R. T. and M. C. Newman. 2008. Ecotoxicology. In Casarett and Doull’s. Toxicology. The basic science of
poisons, ed. C. D. Klaasen. Kansas: McGraw-Hill.
EPA, Environmental Protection Agency. 2000. In situ treatment of soil and groundwater contaminated with
chromium-technical resource. 625/R-00/004. Retrieved from https://cfpub.epa.gov/si/si_public_record_
report.cfm?Lab=NRMRL&dirEntryId=64150.
Folkard, G. and J. Sutherland. 1996. Moringa oleifera: A tree with enormous potential (in Spanish) Original in JAMA.
1931, 8(3): 211. Traducido por Ariadne Jiménez U.C.R., Turrialba, Costa Rica. Agroforestry Today, 8(3).